qrunch.common.arrays.double_excitations_array
Implementation of double excitations array.
Classes
Double Excitations Array. |
- class DoubleExcitationsArray
Bases:
Array,HasCustomEncodingDouble Excitations Array.
All fields are immutable (
frozen=True) so an instance can be safely reused.- Parameters:
alpha_alpha – The pure alpha electron repulsion integrals (physics ordering).
beta_beta – The pure beta electron repulsion integrals (physics ordering).
beta_alpha – The beta-alpha-alpha-beta electron repulsion integrals (physics ordering).
- property H: DoubleExcitationsArray
Return the Hermitian conjugate of the array.
- property T: DoubleExcitationsArray
Return the transpose of the array.
- __init__(alpha_alpha: ndarray[Any, dtype[float64]], beta_beta: ndarray[Any, dtype[float64]], beta_alpha: ndarray[Any, dtype[float64]]) None
- Parameters:
alpha_alpha (ndarray[Any, dtype[float64]])
beta_beta (ndarray[Any, dtype[float64]])
beta_alpha (ndarray[Any, dtype[float64]])
- Return type:
None
- alpha_alpha: ndarray[Any, dtype[float64]]
- beta_alpha: ndarray[Any, dtype[float64]]
- beta_beta: ndarray[Any, dtype[float64]]
- compare(other: Array) bool
Return True, if equal to other array.
- Parameters:
other (Array)
- Return type:
bool
- conjugate() DoubleExcitationsArray
Return the complex conjugate of the array.
- Return type:
- classmethod decode(data: dict[str, Any]) DoubleExcitationsArray
Decode a dictionary.
- Parameters:
data (dict[str, Any]) – The dictionary representation.
- Return type:
- encode() dict[str, Any]
Encode the instance into a dictionary.
- Return type:
dict[str, Any]
- is_hermitian() bool
Check if the array is Hermitian.
- Return type:
bool
- property n_nonzero: int
Return the number of non-zero elements.
- property ndim: Literal[4]
Dimension of the array.
- rotate(rotation_matrices: tuple[ndarray[Any, dtype[float64]], ...]) DoubleExcitationsArray
Rotate the array with the given rotation matrix.
- Parameters:
rotation_matrices (tuple[ndarray[Any, dtype[float64]], ...]) – Tuple of 2-dimensional real symmetric matrix controlling the rotation. Should match the structure given by the output of the rotation_matrix_structure method.
- Return type:
- rotation_matrix_structure() list[RotationBlockDefinition]
Get information on which blocks should be non-zero in the rotation matrix.
- Return type:
list[RotationBlockDefinition]
- property shape: tuple[int, int, int, int]
Return the shape of the array.