qrunch.common.arrays.single_excitations_array
Implementation of a block diagonal matrix.
Classes
Single Excitations Array. |
- class SingleExcitationsArray
Bases:
Array,HasCustomEncodingSingle Excitations Array.
All fields are immutable (
frozen=True) so an instance can be safely reused.- Parameters:
alpha_alpha – The pure alpha electron repulsion integrals (chemistry ordering).
beta_beta – The pure beta electron repulsion integrals (chemistry ordering).
- property H: SingleExcitationsArray
Return the Hermitian conjugate of the array.
- property T: SingleExcitationsArray
Return the transpose of the array.
- __init__(alpha_alpha: ndarray[Any, dtype[float64]], beta_beta: ndarray[Any, dtype[float64]]) None
- Parameters:
alpha_alpha (ndarray[Any, dtype[float64]])
beta_beta (ndarray[Any, dtype[float64]])
- Return type:
None
- alpha_alpha: ndarray[Any, dtype[float64]]
- beta_beta: ndarray[Any, dtype[float64]]
- compare(other: Array) bool
Return True, if equal to other array.
- Parameters:
other (Array)
- Return type:
bool
- conjugate() SingleExcitationsArray
Return the complex conjugate of the array.
- Return type:
- classmethod decode(data: dict[str, Any]) SingleExcitationsArray
Decode a dictionary.
- Parameters:
data (dict[str, Any]) – The dictionary representation.
- Return type:
- encode() dict[str, Any]
Encode the instance into a dictionary.
- Return type:
dict[str, Any]
- is_hermitian() bool
Check if the array is Hermitian.
- Return type:
bool
- property n_nonzero: int
Return the number of non-zero elements.
- property ndim: Literal[2]
Dimension of the array.
- rotate(rotation_matrices: tuple[ndarray[Any, dtype[float64]], ...]) SingleExcitationsArray
Rotate the array with the given rotation matrix.
- Parameters:
rotation_matrices (tuple[ndarray[Any, dtype[float64]], ...]) – Tuple of 2-dimensional real anti-symmetric matrix controlling the rotation. Should match the structure given by the output of the rotation_matrix_structure method.
- Return type:
- rotation_matrix_structure() list[RotationBlockDefinition]
Get information on which blocks should be non-zero in the rotation matrix.
- Return type:
list[RotationBlockDefinition]
- property shape: tuple[int, int]
Return the shape of the array.