qrunch.quantum.algorithms.second_quantization.vqes.basic_vqe
Module containing basic VQE.
Classes
Basic VQE that takes a VQE as the underlying algorithm. |
|
Builder for the basic VQE algorithm. |
- class SecondQuantizationBasicVqe
Bases:
SecondQuantizationVqeAlgorithmBasic VQE that takes a VQE as the underlying algorithm.
- clear_cache() None
Clear the cache of the underlying VQE.
- Return type:
None
- run(second_quantized_operator: T, circuit: Circuit, initial_parameter_guess: dict[Parameter, float] | None = None) SecondQuantizationVqeResult[T]
Run the VQE and find the eigenvalue.
- Parameters:
second_quantized_operator (T) – The operator whose expectation value should be minimized.
circuit (Circuit) – The parametrized circuit to find optimal parameters for. Should contain unspecified parameters.
initial_parameter_guess (dict[Parameter, float] | None) – Dict specifying the initial value of each Parameter. If None is given initial
0.0 (guess is)
- Return type:
- class SecondQuantizationBasicVqeCreator
Bases:
VqeCreatorEstimatorMixin[BasicVqeCreator],VqeCreatorMinimizerMixin[BasicVqeCreator]Builder for the basic VQE algorithm.
- __init__() None
Initialize builder for the basic VQE.
- Return type:
None
- choose_minimizer() MinimizerSubCreator[Self]
Choose minimizer to use for the VQE.
- Return type:
MinimizerSubCreator[Self]
- create() SecondQuantizationBasicVqe
Create an instance of
SecondQuantizationBasicVqe.- Return type:
- with_estimator(estimator: Estimator) Self
Set the estimator to use for the VQE.
- Parameters:
estimator (Estimator) – Estimator to use. Can be created using the
estimator_creator()builder.- Return type:
Self
- with_estimator_shots(shots: int | None) Self
Set the number of shots to use in the estimator.
- Parameters:
shots (int | None) – Number of shots to use in the estimator. If None is given, the estimator is assumed to be exact
simulator). ((e.g. the excitation gate)
- Return type:
Self