qrunch.quantum.algorithms.second_quantization.vqes.adaptive_vqe

Module containing adaptive VQE.

Classes

BeastSecondQuantizationAdaptiveVqeCreator

Builder for the adaptive VQE algorithm.

SecondQuantizationAdaptiveVqe

VQE that takes an adaptive VQE as the underlying algorithm.

SecondQuantizationAdaptiveVqeCreator

Builder for the adaptive VQE algorithm.

class BeastSecondQuantizationAdaptiveVqeCreator

Bases: VqeCreatorEstimatorMixin[AdaptiveVqeCreator], VqeCreatorMinimizerMixin[AdaptiveVqeCreator], VqeCreatorReminimizerMixin[AdaptiveVqeCreator], VqeCreatorOptionsMixin[AdaptiveVqeCreator], VqeCreatorStoppingCriterionMixin[AdaptiveVqeCreator], VqeCreatorAnalyticalBeastVqeMixin[AdaptiveVqeCreator], VqeCreatorDataPersisterManagerMixin[AdaptiveVqeCreator]

Builder for the adaptive VQE algorithm.

__init__(gate_selector_builder: FastGateSelectorCreator) None

Initialize builder for the adaptive VQE.

Parameters:

gate_selector_builder (FastGateSelectorCreator)

Return type:

None

choose_data_persister_manager() DataPersisterManagerSubCreator[Self]

Choose the data persister manager to use and whether to save and/or load the data.

Return type:

DataPersisterManagerSubCreator[Self]

choose_minimizer() MinimizerSubCreator[Self]

Choose minimizer to use for the VQE.

Return type:

MinimizerSubCreator[Self]

choose_reminimizer() ReMinimizerSubCreator[Self]

Choose reminimizer to use for the VQE.

Return type:

ReMinimizerSubCreator[Self]

choose_stopping_criterion() StoppingCriterionSubCreator[Self]

Choose stopping criterion to use for the VQE.

Return type:

StoppingCriterionSubCreator[Self]

create() SecondQuantizationAdaptiveVqe

Create an instance of SecondQuantizationAdaptiveVqe.

Return type:

SecondQuantizationAdaptiveVqe

with_analytical_beast_basic_vqe(*, active: bool = True) Self

Choose to use the analytical basic vqe inside each adaptive iteration, which only works for BEAST.

Instead of having the minimizer call the estimator directly, the estimator is first called to make an analytical expression for the energy as a function of the gate parameter. This expression is then passed to the minimizer, requiring no more measurements.

Note: This feature only works with BEAST with last parameter optimization.

If a reminimizer is chosen, it will be paired with the normal Basic vqe since, only it, supports multiple parameters at once.

Parameters:

active (bool) – Whether to use the analytical beast basic vqe or not.

Return type:

Self

with_estimator(estimator: Estimator) Self

Set the estimator to use for the VQE.

Parameters:

estimator (Estimator) – Estimator to use. Can be created using the estimator_creator() builder.

Return type:

Self

with_estimator_shots(shots: int | None) Self

Set the number of shots to use in the estimator.

Parameters:
  • shots (int | None) – Number of shots to use in the estimator. If None is given, the estimator is assumed to be exact

  • simulator). ((e.g. the excitation gate)

Return type:

Self

with_gate_selector_sampler(sampler: Sampler) Self

Set the sampler for the gate selector to use for the VQE.

Parameters:

sampler (Sampler) – The sampler to use. Can be created using the sampler_creator().

Return type:

Self

with_gate_selector_shots(shots: int | None) Self

Set the shots on the gate selector to use for the VQE.

Parameters:

shots (int | None) – The number of shots to use in the Gate selector.

Return type:

Self

with_options(options: IterativeVqeOptions) Self

Set the options to use for the VQE.

Parameters:

options (IterativeVqeOptions) – Options to use.

Return type:

Self

class SecondQuantizationAdaptiveVqe

Bases: SecondQuantizationAdaptiveVqeAlgorithm

VQE that takes an adaptive VQE as the underlying algorithm.

__init__(vqe: PauliAdaptiveVqeAlgorithm, mapper: Mapper | None = None) None

Initialize adaptive VQE.

Parameters:
Return type:

None

clear_cache() None

Clear the cache of the underlying VQE.

Return type:

None

classmethod persistence_checkpoints() list[str]

Define the persistence checkpoints used during the adaptive vqe.

These checkpoints specify computational stages where intermediate results can be saved and loaded to optimize computations and ensure reproducibility.

Return type:

list[str]

run(second_quantized_operator: T, gate_pool: GatePool, initial_ansatz: Circuit, callback: AdaptiveIterationCallback | None = None, input_result: SecondQuantizationAdaptiveVqeResult[T] | None = None) SecondQuantizationAdaptiveVqeResult[T]

Run the VQE and find the eigenvalue.

Parameters:
  • second_quantized_operator (T) – The operator whose expectation value should be minimized.

  • gate_pool (GatePool) – The set of gates to choose from when building the ansatz.

  • initial_ansatz (Circuit) – The starting ansatz circuit. Gates from the gate_pool is appended to this.

  • callback (AdaptiveIterationCallback | None) – An optional callback function that is called at each minimizer iteration.

  • input_result (SecondQuantizationAdaptiveVqeResult[T] | None) – A prior results that should be refined.

Return type:

SecondQuantizationAdaptiveVqeResult[T]

class SecondQuantizationAdaptiveVqeCreator

Bases: VqeCreatorEstimatorMixin[AdaptiveVqeCreator], VqeCreatorMinimizerMixin[AdaptiveVqeCreator], VqeCreatorReminimizerMixin[AdaptiveVqeCreator], VqeCreatorOptionsMixin[AdaptiveVqeCreator], VqeCreatorStoppingCriterionMixin[AdaptiveVqeCreator], VqeCreatorGateSelectorMixin[AdaptiveVqeCreator], VqeCreatorAnalyticalBeastVqeMixin[AdaptiveVqeCreator], VqeCreatorDataPersisterManagerMixin[AdaptiveVqeCreator]

Builder for the adaptive VQE algorithm.

__init__() None

Initialize builder for the adaptive VQE.

Return type:

None

choose_data_persister_manager() DataPersisterManagerSubCreator[Self]

Choose the data persister manager to use and whether to save and/or load the data.

Return type:

DataPersisterManagerSubCreator[Self]

choose_minimizer() MinimizerSubCreator[Self]

Choose minimizer to use for the VQE.

Return type:

MinimizerSubCreator[Self]

choose_reminimizer() ReMinimizerSubCreator[Self]

Choose reminimizer to use for the VQE.

Return type:

ReMinimizerSubCreator[Self]

choose_stopping_criterion() StoppingCriterionSubCreator[Self]

Choose stopping criterion to use for the VQE.

Return type:

StoppingCriterionSubCreator[Self]

create() SecondQuantizationAdaptiveVqe

Create an instance of SecondQuantizationAdaptiveVqe.

Return type:

SecondQuantizationAdaptiveVqe

with_analytical_beast_basic_vqe(*, active: bool = True) Self

Choose to use the analytical basic vqe inside each adaptive iteration, which only works for BEAST.

Instead of having the minimizer call the estimator directly, the estimator is first called to make an analytical expression for the energy as a function of the gate parameter. This expression is then passed to the minimizer, requiring no more measurements.

Note: This feature only works with BEAST with last parameter optimization.

If a reminimizer is chosen, it will be paired with the normal Basic vqe since, only it, supports multiple parameters at once.

Parameters:

active (bool) – Whether to use the analytical beast basic vqe or not.

Return type:

Self

with_estimator(estimator: Estimator) Self

Set the estimator to use for the VQE.

Parameters:

estimator (Estimator) – Estimator to use. Can be created using the estimator_creator() builder.

Return type:

Self

with_estimator_shots(shots: int | None) Self

Set the number of shots to use in the estimator.

Parameters:
  • shots (int | None) – Number of shots to use in the estimator. If None is given, the estimator is assumed to be exact

  • simulator). ((e.g. the excitation gate)

Return type:

Self

with_gate_selector(gate_selector: GateSelector) Self

Choose the gate selector to use for the VQE.

Parameters:

gate_selector (GateSelector) – Gate selector to use. Can be created using the gate_selector_creator().

Return type:

Self

with_options(options: IterativeVqeOptions) Self

Set the options to use for the VQE.

Parameters:

options (IterativeVqeOptions) – Options to use.

Return type:

Self